500 research outputs found

    Quantum Convolutional Error Correcting Codes

    Get PDF
    I report two general methods to construct quantum convolutional codes for NN-state quantum systems. Using these general methods, I construct a quantum convolutional code of rate 1/4, which can correct one quantum error for every eight consecutive quantum registers.Comment: Minor revisions and clarifications. To appear in Phys. Rev.

    Quantum Convolutional Error Correction Codes

    Full text link
    I report two general methods to construct quantum convolutional codes for quantum registers with internal NN states. Using one of these methods, I construct a quantum convolutional code of rate 1/4 which is able to correct one general quantum error for every eight consecutive quantum registers.Comment: To be reported in the 1st NASA Conf. on Quantum Comp., uses llncs.sty, 12 page

    Fabrication on the microscale : a two-photon polymerized device for oocyte microinjection

    Get PDF
    Open Access funding enabled and organized by CAUL and its Member Institutions. KRD is supported by a Mid-Career Fellowship from the Hospital Research Foundation (C-MCF-58–2019). KD acknowledges funding from the UK Engineering and Physical Sciences Research Council (grant EP/P030017/1). This study was funded by the Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CE140100003).Purpose Intracytoplasmic sperm injection (ICSI) addresses male sub-fertility by injecting a spermatozoon into the oocyte. This challenging procedure requires the use of dual micromanipulators, with success influenced by inter-operator expertise. We hypothesized that minimizing oocyte handling during ICSI will simplify the procedure. To address this, we designed and fabricated a micrometer scale device that houses the oocyte and requires only one micromanipulator for microinjection. Methods The device consisted of 2 components, each of sub-cubic millimeter volume: a Pod and a Garage. These were fabricated using 2-photon polymerization. Toxicity was evaluated by culturing single-mouse presumptive zygotes (PZs) to the blastocyst stage within a Pod, with several Pods (and embryos) docked in a Garage. The development was compared to standard culture. The level of DNA damage/repair in resultant blastocysts was quantified (γH2A.X immunohistochemistry). To demonstrate the capability to carry out ICSI within the device, PZs were microinjected with 4-μm fluorescent microspheres and cultured to the blastocyst stage. Finally, the device was assessed for oocyte traceability and high-throughput microinjection capabilities and compared to standard microinjection practice using key parameters (pipette setup, holding then injecting oocytes). Results Compared to standard culture, embryo culture within Pods and a Garage showed no differences in development to the blastocyst stage or levels of DNA damage in resultant blastocysts. Furthermore, microinjection within our device removes the need for a holding pipette, improves traceability, and facilitates high-throughput microinjection. Conclusion This novel device could improve embryo production following ICSI by simplifying the procedure and thus decreasing inter-operator variability.Publisher PDFPeer reviewe

    Good Quantum Convolutional Error Correction Codes And Their Decoding Algorithm Exist

    Get PDF
    Quantum convolutional code was introduced recently as an alternative way to protect vital quantum information. To complete the analysis of quantum convolutional code, I report a way to decode certain quantum convolutional codes based on the classical Viterbi decoding algorithm. This decoding algorithm is optimal for a memoryless channel. I also report three simple criteria to test if decoding errors in a quantum convolutional code will terminate after a finite number of decoding steps whenever the Hilbert space dimension of each quantum register is a prime power. Finally, I show that certain quantum convolutional codes are in fact stabilizer codes. And hence, these quantum stabilizer convolutional codes have fault-tolerant implementations.Comment: Minor changes, to appear in PR

    Vitrification within a nanoliter volume : oocyte and embryo cryopreservation within a 3D photopolymerized device

    Get PDF
    Open Access funding enabled and organized by CAUL and its Member Institutions. KRD is supported by a Mid-Career Fellowship from the Hospital Research Foundation (C-MCF-58–2019). KD acknowledges funding from the UK Engineering and Physical Sciences Research Council (grants EP/P030017/1). This study was funded by the Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CE140100003).Purpose Vitrification permits long-term banking of oocytes and embryos. It is a technically challenging procedure requiring direct handling and movement of cells between potentially cytotoxic cryoprotectant solutions. Variation in adherence to timing, and ability to trace cells during the procedure, affects survival post-warming. We hypothesized that minimizing direct handling will simplify the procedure and improve traceability. To address this, we present a novel photopolymerized device that houses the sample during vitrification. Methods The fabricated device consisted of two components: the Pod and Garage. Single mouse oocytes or embryos were housed in a Pod, with multiple Pods docked into a Garage. The suitability of the device for cryogenic application was assessed by repeated vitrification and warming cycles. Oocytes or early blastocyst-stage embryos were vitrified either using standard practice or within Pods and a Garage and compared to non-vitrified control groups. Post-warming, we assessed survival rate, oocyte developmental potential (fertilization and subsequent development) and metabolism (autofluorescence). Results Vitrification within the device occurred within ~ 3 nL of cryoprotectant: this volume being ~ 1000-fold lower than standard vitrification. Compared to standard practice, vitrification and warming within our device showed no differences in viability, developmental competency, or metabolism for oocytes and embryos. The device housed the sample during processing, which improved traceability and minimized handling. Interestingly, vitrification-warming itself, altered oocyte and embryo metabolism. Conclusion The Pod and Garage system minimized the volume of cryoprotectant at vitrification—by ~ 1000-fold—improved traceability and reduced direct handling of the sample. This is a major step in simplifying the procedure.Publisher PDFPeer reviewe

    All-Optical Broadband Excitation of the Motional State of Trapped Ions

    Full text link
    We have developed a novel all-optical broadband scheme for exciting, amplifying and measuring the secular motion of ions in a radio frequency trap. Oscillation induced by optical excitation has been coherently amplified to precisely control and measure the ion's secular motion. Requiring only laser line-of-sight, we have shown that the ion's oscillation amplitude can be precisely controlled. Our excitation scheme can generate coherent motion which is robust against variations in the secular frequency. Therefore, our scheme is ideal to excite the desired level of oscillatory motion under conditions where the secular frequency is evolving in time. Measuring the oscillation amplitude through Doppler velocimetry, we have characterized the experimental parameters and compared them with a molecular dynamics simulation which provides a complete description of the system.Comment: 8 pages, 10 figure

    Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview

    Get PDF
    Here, we review the basic concepts and applications of the phase-field-crystal (PFC) method, which is one of the latest simulation methodologies in materials science for problems, where atomic- and microscales are tightly coupled. The PFC method operates on atomic length and diffusive time scales, and thus constitutes a computationally efficient alternative to molecular simulation methods. Its intense development in materials science started fairly recently following the work by Elder et al. [Phys. Rev. Lett. 88 (2002), p. 245701]. Since these initial studies, dynamical density functional theory and thermodynamic concepts have been linked to the PFC approach to serve as further theoretical fundaments for the latter. In this review, we summarize these methodological development steps as well as the most important applications of the PFC method with a special focus on the interaction of development steps taken in hard and soft matter physics, respectively. Doing so, we hope to present today's state of the art in PFC modelling as well as the potential, which might still arise from this method in physics and materials science in the nearby future.Comment: 95 pages, 48 figure

    Optical dipole traps and atomic waveguides based on Bessel light beams

    Full text link
    We theoretically investigate the use of Bessel light beams generated using axicons for creating optical dipole traps for cold atoms and atomic waveguiding. Zeroth-order Bessel beams can be used to produce highly elongated dipole traps allowing for the study of one-dimensional trapped gases and realization of a Tonks gas of impentrable bosons. First-order Bessel beams are shown to be able to produce tight confined atomic waveguides over centimeter distances.Comment: 20 pages, 5 figures, to appear in Phys. Rev.
    • …
    corecore